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1.01 Abstract

An analysis is made for the study of two- dimensional laminar boundary layer
flow of a viscous, incompressible fluid, along an infinite, porous, hot, vertical
continuous moving plate. The governing partial differential equations are non-
dimensionalized and are solved using Natural Transform Technique. The
expressions for velocity field, temperature field, rate of heat transfer and skin-
friction have been obtained. The influence of various physical parameters, such as
Eckert number Ec, Prandtl number Pr, Grashoff number Gr, plate velocity o and
heat source/sink parameters is extensively discussed with the help of graphs to
show the physical aspects of the problem. It is found that these parameters
significantly affect the flow and heat transfer.

Key Words: Incompressible fluid, Laminar flow, boundary layer, moving
porous plate, heat transfer, natural transformation.

1.02 Introduction

A study of boundary layer (Sparrow [19], Schlichting [17], Bansal [3]) behavior
on continuous solid surface has attracted the attention of researchers because such
flows may find applications in different areas such as aerodynamic extrusion of
plastic sheets, the boundary layer along material handling conveyers, the cooling of
an infinite metallic plate in a cool bath etc. The classical problem was introduced
by Blasius[5] by studying the boundary layer flow on a fixed flat plate. The flow
field due to moving flat surface was developed by Sakiadis [ 16] where he took the
constant velocity of plate. Crane [9] extended the work of Sakiadis[16] for two
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dimensional problem under some specific conditions. Yao, Fang and Zhong[21]
studied the heat transfer of a generalized stretching/shrinking wall problem with
convective boundary conditions. Cortell [8] investigated the flow and heat transfer
of a viscoelastic fluid over a stretching sheet.

Prasad et.al.[15] studied the momentum and heat transfer in viscoelastic fluid
flow in porous medium over a non —isothermal stretching sheet. Later Cortell [7]
found the similarity solutions for flow and heat transfer of viscoelastic fluid over a
porous stretching sheet. Vajravelu [20] obtained the solution of boundary layer
flow and heat transfer over a continuous porous surface moving in an oscillating
free stream.

The generalization of Laplace-Transform i.e. Natural-Transform, initially was
defined by Khan and Khan [10] as N - transform, who studied their properties and
applications. Later, Belgacem et al. [4] and Silambarasan et al. [18] defined its
inverse and studied some additional fundamental properties of this integral
transform and named it the Natural Transformation. Applications of Natural
transform in the solution of partial differential equations were studied by Al-Omari
[2] and Bulu et al. [6]. Loonker et al. [11,12] applied the Natural Transform for the
distribution and Boehmians spaces. The recent development for the use of Natural
Transform in the study of boundary layer on moving horizontal plate has been
done by Agarwal et al. [1].

Aim of the present chapter is to investigate steady laminar boundary layer flow
and heat transfer through an incompressible viscous fluid along an infinite, porous,
hot vertical continuous moving plate in the presence of volumetric rate of heat
generation (or absorption) and constant free stream by means of Natural
Transformation.

1.03 Formulation of the Problem

Consider the steady boundary layer flow and heat transfer of a viscous
incompressible fluid along an infinite hot vertical continuous moving plate in the
presence of constant suction at the surface, constant free stream U, and heat
generation (or absorption). The plate is moving in upwards direction i.e.in flow
direction with constant velocity and maintained at a constant temperature T,,. The
flow is in positive direction of X*-axis in upwards direction and Y*-axis is taken
normal to the plate.
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The governing boundary layer equations of continuity, motion and energy
for flow of an incompressible viscous fluid along an infinite, hot, vertical, porous
continuous moving plate can be calculated as

Equation of Continuity
In two-dimension flow, the equation of continuity

*
av—:Oév*:—vo(corlstant), v, >0 ... (1.03.01)
ay *
Equation of Motion
The equation of motion in vertical direction i.e.in x- direction

p[—v%i)wij;fwgﬁ(T*—m . (1.03.02)

Equation of Energy
The equation of energy in vertical direction

oC (_VO%:)_KZZ"W(Z:] LO(T*-T) .. (1.03.03)

where u*, v* are the velocity components along X*- axis and Y*- axis,
respectively, p the density, y the cross-flow velocity, p the coefficient of viscosity,
C, the specific heat at constant pressure, , the thermal conductivity, Q the
volumetric rate of heat generation parameter, g the acceleration due to gravity, 7

the free stream temperature and  the volume expansion.

The corresponding boundary conditions are

ye=0 tu* =U_ ,v¥= -y, T* =T,
... (1.03.04)

Voo st >U, , T*>T,

1.04 Method of Solution

Introducing the following non-dimensional quantities
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% *_

y=y*v—°,u=zl]—,9=7§ YTf’,a=%

C" s e e .. (1.04.01)
Pr=‘u paS:Q—VzaEcz Uoo 7Gr=gﬂl;(Tw_Tw)

K Kv; C, (Tw —Tw) U,v,
into the equation (1.03.02) and (1.03.03), to get
W' =—Gro ... (1.04.02)
0"+PrO'+ S0 =—EcPr(u')’ ... (1.04.03)

Where Pr is the Prandtl number, Ec the Eckert number, S the heat source/sink
parameter and dashes denote the differentiation w.r.t. y.

The boundary conditions in non- dimensional form are

y= 0: u=x,86=1 (1.04.04)
y—>o: u—>1,6—>0 o

Where *a’ is the velocity ratio parameter.

The equations (1.04.02) and (1.04.03) are ordinary non-linear second order
coupled differential equations with constant coefficients and solved under the
boundary conditions (1.04.04).

For incompressible fluid flow, the Eckert number is very small therefore u(y) and
0(y) can be expanded in the powers of Ec as given below-

u(y) =u,+ Ecu, +O(Ec2) ... (1.04.05)
0(y) =6, + EcO, + O(Ec”) ... (1.04.06)

Comparing the coefficients of like powers of Ec, we get

Zeroth-order Equations
u" +u', =-Gré, ... (1.04.07)

0" +Pr0',+50,=0 ... (1.04.08)

First-order Equations
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u" +u', =-Gro, ... (1.04.09)
0" +Pr@'+56,=—Pr(u',)’ ... (1.04.10)

The corresponding boundary conditions are

y=0 :uy,=c,u =0,6,=1,6,=0 }

.. (1.04.11)
y—>w©o: u, >Lu —>0,6 —>0,6 —>0

Now we use the Natural Transform to solve the zeroth order and first order

equations. Solving equation (1.04.08), we get

—Pr++/Pr2—4S y —Pr—/Pr2-4S

y
2 te 2

1
90()’) ZE e

—Pr+yPr2-4S8 —Pr—/Pr2-4s8

+—1 o' (O)+1Pr e 2 y—e 2 g
[5.2 0 2
Pr=—4S§
Using boundary condition at y—oo, to give
. Pr+Pr’—4S
6',(0) = ———— 2
2
This provides
—Pr—m . 2
O()=e ? =™, where , _—ProVPr-4s .. (1.04.12)

2

Therefore equation (1.04.07) becomes
u"+u'y=—-Gre™”

Using Natural Transformation and after little simplification, we get

uy(y) = Gr__Gr e’ - Gr e + (a +u', (O)) —u'y(0)e™
m, (1+m,) m,(1+m,)

Now applying boundary condition at y—oo, to give
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u',(0) =1—a—%

2

Hence,
u(y)=1+4e™" -Be™,

_ G and Gr

Where 4 =a -1+ B =
m,(1+m,)

my(1+my)
Now we solve first order equations.

Using equation (1.04.13) into equation (1.04.10), we get
0" +Pr6'\+S6 +Pr(-Ae” - Bme™” )z 0

Solving it, using Natural Transform, we get

()= >
JPr’-4s 2
A]Z Pr 2y 2A12 Pr myy
. :
(S=2Pr+4) - (preVPr—45 —4)JPr-as
4 2A12 Pr e—(Pr+mz)y

(—Pr+ JPr—4s +4)\;[Pr2—4S

2B’ Prm, RIS B’ Prm, o
(Pr+ 3Pr— 4S) Pr—4S

Y

2Bl2 Pr mz2 ~(Prm; )y

+
(Pr+ 3\/Pr2—4S)\fPr2—4S

24,B, Prm, oy _ 24,B Prm, o
(1 + \/Pr2—4S) P —4S
2A1B1 Pr mz e—(Pr+mz)y
(1 +/Pri— 45)\[Pr2—45

After applying boundary condition at y—oo, we get

...(1.04.13)

.. (1.04.14)
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0" (0)= 24 Pr . 2B’Prm’  24BPrm,

(~Pr+4+Pr’—4S) (Pr+3JPr’—4S) (1+/Pr’-45)

This further gives

0,(y) = Ae™ + B,e™ +C,e" ™" + G’ ... (1.04.15)
Where

o A’ Pr 248 Prm, G - =B*Prm, 404
(S—2Pr+4)

1=(Pr+2m,) > Pr+3m,

B, =~(4,+G,+C,) .. (1.04.16)

Next we take equation (1.04.09),

u"+u'| =-Gro,
=u"+u'|, =-Gr [AQe’zy +B,e™ + CQe('"Z"”y + GQeZ”'zy ]

Solving it by using Natural Transform, we get

A, (1 —2e™” +e‘2y)

-1 Gr
() =u',(O)[ 1= |- == (_ [ I e(m:_w)

1 2 - 1 2m
G| —— y 2y
_+ 2( m2+(2m2+1)e +m2(2m2+1)e j_
After applying boundary condition at y — o, we get
u'l(O) — %|:A2 _%_L_i:‘
which gives
u(y)=4e™ +Be™ +Ce™ ™" +Ge™™ + He™ .. (1.04.17)

Where
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A3:_(GrA2) B, =- & C,=- & G, =- L
2 m, (m, +1) ‘ m, (m, —1) 2m, (2m, +1)

and H,=—(4,+B,+C,+G,) ... (1.04.18)

Hence the velocity field (1.04.05) and temperature field (1.04.06) become
u(y) =u, + Ecu, + O(Ec”)

u(y)=1+4e” -Be™ +Ec {A3e’2y +Be"™ +Ce™ ™ +Ge™ + He™ } ... (1.04.19)
0(y) =0, + Ect, + O(Ec")

O(y)=¢e""+ Ec{Aze_zy +B,e"™ +C ™™ + Gzezmﬁy} ... (1.04.20)
Neglecting higher order terms of Ec.

1.05 Skin-Friction Coefficient

The skin-friction coefficient c,at the plate is given by

T, Ou
¢ (2]
p Uoo VO Yy =0

C, =—A4 —m,B, + Ec{-24,+m,B; +(m, —1)C, +2m,G, — H,} .. (1.05.01)

1.06 Nusselt Number

The rate of heat transfer in terms of Nusselt number at the plate is given by

N ILL:_(@j
vk, -T) o),

N, =-m,— Ec{-24,+m,B, +(m,~1)C, +2m,G, } .. (1.06.01)

u
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1.07 Result and Discussion

Figure 1.01-Velocity Profile for Different Values of Grashoff Number
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Gr=0.0, Pr=7,8=0.1,E¢=0.01,alpha=1.5 |
Gr=1.0, Pr=7,5=0.1,Ec=0.01,alpha=1.5
Gr=3.0, Pr=7,5=0.1,Ec=0.01,alpha=1.5
Gr=5.0, Pr=7,8=0.1,E¢=0.01,alpha=1.5
Gr=7.0, Pr=7,5=0.1,Ec=0.01,alpha=1.5
Gr=9.0, Pr=7,5=0.1,Ec=0.01,alpha=1.5
Gr=11.0,Pr=7,5=0.1,Ec=0.01,alpha=1.5 !

From this figure it is clear that for zero Grashoff Number (i.e. when the fluid
temperature at wall is same as the free stream temperature or T,, = T.) the fluid
velocity decreases continuously with distance (y), but for positive Grashoff
Numbers the velocity attains its maximum value at y=0.5 (approx.) and then it
decreases exponentially. We can also observe that mean fluid velocity increases

with increasing value of the Grashoff Number.

45 T T
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Distance(y)

Fig.1.02

Figure 1.02-Velocity Profile for different Values of Prandtl Number
T

T T i
Pr=0.71,Gr=5,Ec=0.01,8=0.1,alpha=1.5

Pr=0.80,Gr=5,Ec=0.01,8=0.1,alpha=1.5
Pr=0.90,Gr=5,Ec=( 0.1,alpha=1.5
Pr=1.00,Gr=5,Ec=0.01,8=0.1,alpha=1.5
Pr=3.00,Gr=5,Ec=0.01,8=0.1,alpha=1.5
Pr=5.00,Gr=5,Ec=0.01,8=0.1,alpha=1.5
Pr=7.00,Gr=5,Ec=0.01,5=0.1,alpha=1.5

From this figure we observe that the mean stream velocity is minimum for Prandtl
Number one (Pr=1).For Pr >1 higher the Prandtl Number greater will the velocity.
The phenomena get reversed for Pr <1, i.e. as the Prandtl Number of fluid

decreases the mean velocity increases.
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Figure 1.03-Velocity Profile for different values of Eckert Number
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It is evident from this figure that the mean fluid velocity increases with increasing
the Eckert Number. i.e. under the same circumstances the fluid with large Eckert
Number flows fast as compare to the fluid with smaller Eckert Number.
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Figure1.04-Velocity Profile for Different Values of Heat source/Sink Parameter
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For the given set of values, we observe that the mean velocity increases with
increasing the value of heat source parameter for S <10, and the direction of flow
becomes opposite for S >10. The velocity decreases gradually as we increases the
value of S (for S >10).
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Figure 1.05-Velocity Profile for Different walues of Plate Velocity
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Fig.1.05
It is evident from this figure that the mean fluid velocity increases with increasing
the plate velocity. Also for y=0.7(approx.) the fluid gets its maximum velocity.
The graph between distance and velocity is skewed in right and changes its nature
from platykurtic to leptokurtic as we increase the plate velocity.

Figure 1.06-Temparature Distribution Profile for Varying Grashoff Number
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Fig.1.06
The above figure shows that as we increase the Grashoff Number of the fluid, the
mean temperature distribution increases in the thin boundary layer near the plate
where the viscous forces are confined.
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Figure 1.07-Temperature Distribution for Difierent Values of Prandtl Number
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From this figure we observe that the temperature distribution decreases as
increase the value of Prandtl number. For the given set of data it is maximum for

Pr=0.7 i.e. for air.
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Figure 1.08-Temperature Distribution for Different Values of Eckert Number
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It is evident from this figure that the temperature distribution increases with
increasing the value of Eckert Number. For very small Eckert Number the
temperature decreases continuously with distance from plate.
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Figure 1.08-Temperature Distribution for Different Values of Heat Source/Sink Parameter
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The above figure shows that as we increase the value of heat source parameter, the
mean temperature distribution increases and sharp changes take place for large

value of heat source parameter.

Figure 1.10-Temperature Distribution for Different Values of Plate Velocity
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Fig.1.10

It is evident from this figure that the mean temperature distribution increases with
increasing the plate velocity. From this phenomenon we conclude that more the

plate velocity greater will the heat transfer.

517



518

S. K. Agarwal, R. Mathur and H. V. Harsh

References

(1]

(2]
(3]
(4]
(3]
(6]

(7]
(8]
(9]
[10]
(1]
[12]
[13]
[14]

[15]

[16]
[17]
(18]
[19]

[20]

Agarwal S.K., Jhankal A K. and Mathur R., Boundary Layer Flow And Heat Transfer
Along An Infinite Porous Hot Horizontal Continuous Moving Plate By Means Of The
Natural Transformation Method, Int. J. Eng. Res and App., 6, (2016), 83-87.

Al-Omari S. K. Q., On the applications of Natural transform, International Journal of
Pure and Applied Mathematics, 85(4), (2013), 729-744.

Bansal J. L., Viscous Fluid Dynamics, Oxford & IBH Pub. Co., New Delhi, India.
(1977).

Belgacem F. B. M. and Silambarasan R., Theory of Natural Transforms, Math. Engg, Sci.
Aerospace (MESA), 3 (1), (2012), 99-124.

Blasius H., Grenzschichten in Flussigkeiten mit kleiner Reibung Zeitschrift for
Mathematik Physik, 56, (1908), 1-37.

Bulu H., Baskonus H. M. and Belgacem F. B. M., The Analytical Solution Of Some
Fractional Ordinary Differential Equations By The Sumudu Transform Method, Abstract
And Applied Analysis. (2013), 1-6.

Cortell R., 4 Note On Flow And Heat Transfer Of A Viscoelastic Fluid Over A Stretching
Sheet, Int. J. Non-Linear Mech., 41, (2006), 78-85.

Cortell R., Similarity Solutions For Flow And Heat Transfer Of A Viscoelastic Fluid
Over A Stretching Sheet. Int. J. Non-Linear Mech., 29, (1994), 155-161.

Crane L., Flow Past A Stretching Plate, Z. Angew Math Phys(ZAMP), 21, (1970), 645-
647.

Khan Zafar H. and Khan Waqar A., N- Transform - Properties and Applications, NUST
J. Engg. Sci. 1 (1), (2008), 127-133.

Loonker, Deshna and Banerji P. K., Applications Of Natural Transform To Differential
Equations, J. Indian Acad. Math. 35 (1), (2013), 151-158.

Loonker, Deshna and Banerji P. K., Natural Transform For Distribution And Boehmian
Spaces, Math. Engg. Sci. Aerospace, 4 (1), (2013), 69-76.

Pai S. L, Viscous Flow Theory-I: Laminar Flow, D.Van Nostrand Co., New York,
USA. (1956).

Podlubny 1., Fractional Differential Equations, Mathematics in Science and
Engineering, Academic Press, San Diego, USA. 198, (1999).

Prasad K.V., Abel M.S. and Khan S.K., Momentum And Heat Transfer In Viscoelastic
Fluid Flow In Porous Medium Over A Non-Dimensional Stretching Sheet, Int. J. Num.
Meth.Heat Fluid Flow, 10, (2000), 786-801.

Sakiadis B. C., Boundary-Layer Behavior On Continues Solid Surfaces: II. The
Boundary-Layer On Continuous Flat Surface, AIChE J, 7, (1961), 221-225.

Schlichting H. Boundary Layer Theory, sixth ed., McGraw-Hill, New York, (1964).
Silambarasan R. and Belgacem F. B. M. Applications Of The Natural Transform To
Maxwell's Equations, Prog. Electromagnetic Research Symposium Proc. Suzhou,
China, (2011), 899- 902.

Sparrow E.M. and Cess R.D., Temperature-Dependent Heat Sources Or Sinks In A
Stagnation Point Flow, Appl. Sci. Res. A10, 185,(1961).

Vajravelu K., Boundary Layer Flow And Heat Transfer Over A Continuous, Porous,
Surface Moving In An Oscillating Free Stream-I, ZAMM. Z.angew. Math. Mech., 67
(1987) 7, 342-344.



A study of steady laminar boundary layer flow and heat transfer along an infinite 519
[21] Yao S., Fang T. and Zhong Y., Heat Transfer Of A Generalized Stretching/Shriking
Wall Problem With Convective Boundary Conditions. Common Nonlinear Sci. Number.
Simulat. 16, (2011), 75.



